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Modelling the cost of the biggest forthcoming disaster using

largest values and next record in insurance

Lucien Diégane GNING *, Daniel PIERRE-LOTI-VIAUD †

Abstract

In this paper, we consider a sequence of independent and identically distributed random variables for

which, for n ≥ 2, only the l largest values are observed (with 2 ≤ l ≤ n). For example, this is the case when

the excesses over a threshold are only observed. We propose a method to calculate a prediction interval for

the value of the next record of this sequence. This method is based on using linear regression models, without

doing any parametric assumption on the distribution of the observed variables. The explanatory variable in

these models is the rank of the order statistics related to the largest values observed. The obtained result is

compared with an exact prediction interval knowing the distribution of the sequence, and with a prediction

interval calculated by using the Hill estimator and assuming that the sequence has a Pareto distribution. These

comparisons are made on several simulated-data sets, and the linear model method is also applied to insur-

ance data related to catastrophic events.

Keywords : Extremes; Records; Order statistics; Linear model; Pareto distribution.

1 Introduction

A fairly elaborate introduction is necessary to present the context, the purpose, the state of the art, and our

approach of the problem addressed. For clarity, it is organized into four sections.

1.1 Probabilistic model.

Let X1, X2, . . . be a sequence of independent and identically distributed (i.i.d.) random variables with its dis-

tribution denoted by PX1 . For each n ≥ 1, let Xn,n ≤ ·· · ≤ Xn,1 denote the order statistics associated with the
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sample X1, · · · , Xn . For an integer ℓ ∈ [1,n], let Yℓ,n = (Xn,1 · · ·Xn,ℓ)′ ∈ Rℓ be the vector of the ℓ largest values of

this sample. For small ℓ compared to n, Yℓ,n represents the upper extreme values of the sample X1, . . . , Xn .

Two hypotheses allow to complete our framework. Firstly, on the observed data: for a realization ω, an un-

known n and a small ℓ, the observations are given by the vector Yℓ,n(ω). Secondly, on the probability law PX1 :

the right end of its support is infinite and the related upper tail is heavy, a typical situation in insurance.

1.2 Aim

In such a framework, the quantity Mn(ω) = Xn,1(ω) = maxi∈{1,...,n} Xi (ω) is known, and the aim of this presen-

tation is to predict the first value that exceeds Mn(ω), to be explicit, the value of Xn+ j (ω), for j the smallest

positive integer such that Xn+ j (ω) > Mn(ω). The quantity Xn+ j (ω) is the value of the next record of the se-

quence X1(ω), X2(ω), . . . when it is observed until the index n. We observe that it would be also interesting to

predict the value j for which this record emerges, nevertheless this will not be discussed here. In what follows,

the next-record value will be denoted by R(ω).

An example in insurance of next record value is the next largest economic cost of natural disasters that will

arrive in the World after the Sendai earthquake. Another example is the next largest claim cost for insurers and

re-insurers that will arrive in the World after Hurricane Katrina.

1.3 What does exist

The study of records is related to extreme-value theory and to PX1 upper tail properties. For example, as n goes

to infinity the asymptotic behavior of Mn depends on the upper-tail behavior of PX1 , it is the Fisher-Tippett

Theorem. The same is true for the sequence of upper-record values, it is the Resnick duality Theorem.

An R prediction interval (RPI) of the next-record value is often easily obtained if the probability law PX1 is

entirely specified, for example, as one member of a parametric family of distributions such as the normal, log-

normal, and Pareto families, or still several others. In spite of that, if the hypothesis is just that PX1 belongs to

such a parametric family of distributions, an RPI then depends on parameters having to be estimated on the

basis of Y , and, in general, this is impossible. Among others, for the normal and log-normal families, an RPI

depends on all the model parameters, and estimators of these parameters are necessarily functions of n that

is unknown. On the contrary, it works differently for the Pareto family, owing to the fact that the RPI depends

only on Mn and on the shape parameter of the Pareto distribution, and the latter can be estimated from Yℓ,n ,

for example by using the Hill estimator. However, experience (for instance, see the applications of this method

on simulated-data sets discussed in Section 4.2) shows that the resulting RPI is highly dependent on such an

assumption about PX1 . What to do if one has no a priori information on PX1 ? That is a question to which this

presentation seeks to answer.

For more accuracy on this issue, observe in addition that the upper-tail behaviour of PX1 may not be precisely

determined for some applications of extreme-value theory. It is what can regularly be observed in the area of
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insurance, where the log-normal and Pareto distributions are among the most used and are competing as mod-

els for PX1 . As it is emphasized and reiterated several times in Embrechts et al. (2008), we then can highlight

the difficulty of the task by this aphorism: it is an uncertain mission than predicting the unpredictable.

To continue with the consequences of the extreme-value theory, in addition to Hill estimator there is another

tool adapted to the observation of Yℓ,n . Indeed if the vector Yℓ,n lists the peaks over a threshold, the eponym

method (named by its acronym POT) allows to make a distinction between the different upper-tail behaviours

of PX1 , using the limit distribution given by the Balkema, De Haan, and Pickands Theorem. This limit dis-

tribution is the generalized Pareto distribution (GPD), and, particularly, we will use the maximum likelihood

estimator of the shape parameter of the GPD, in combination with its asymptotic confidence interval, to es-

timate whether this parameter is zero or strictly positive. The first case is related to the fact that PX1 is, for

instance, a normal or a log-normal distribution, and the latter to the fact that PX1 is, for instance, a Pareto dis-

tribution. Nevertheless, this method is not very accurate for an unknown n and a small ℓ, it often not allowing

distinguishing between both cases, or even not admitting a numerical solution.

General references on order statistics, extreme values, and records, are Arnold et al. (1992), Beirlant et al.

(1996), Deheuvels (2010), Embrechts et al. (2008), Feller (1970), Galambos (1978), Nevzorvov (2001), Reiss

(1989), Resnick (1987). Some references that focus on extreme-value theory are Embrechts et al. (2008), De

Haan et al. (2006), Neves and Fraga Alves (2008), Reiss and Thomas (1987), Resnick (2007), and on records,

see Gulati and Padgett (2003), or Arnold et al. (1998), or Kukush et al. (2004). Except for Pareto type distri-

butions, with the use of the Hill estimator or of its extensions (Embrechts et al. (2008), Resnick (2007)), we

do not know a reference addressing the problem of predicting the next-record value in our framework (many

references use the sequence of record values instead of Yℓ,n , see Arnold et al. (1998), Gulati and Padgett (2003),

including a censored case, see Mirmostafaee and Ahmadi (2010)). Observe that our problem is related to that

of determining the upper-tail behavior of PX1 from the observation of Yℓ,n .It is a problem for which we have no

more knowledge of a reference that addresses this problem under our non-asymptotic conditions.

1.4 Approach by linear models

In our framework, when the largest values Xn,k are represented as a function of k, it can be observed that they

have the appearance of a convex decreasing function (see, for instance, the graphs presented in Section 2). We

then propose to study the possibility of applying a linear regression model to explain the observed variable

Xn,k by the explanatory variable k, because prediction is an easy process in such a model. More precisely, as for

the studied examples, the curvature due to the convexity is generally more important for some values of k and

can be large, it is proposed the use of two linear regression models with different curvatures here. We therefore

consider the Model 1 given by:

Xn,k = a0 +a1k +a2e−k +ϵk , k ∈ {1, . . . ,ℓ} , (1)
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where the curvature is observed for small values of k, and also the Model 2 given by:

Xn,k = a0 +a1k +a2k2 +ϵk , k ∈ {1, . . . ,ℓ} , (2)

where the curvature is observed for larger values of k. Note that in both models a2 should be a positive pa-

rameter to satisfy the convexity property of the observations. Note also that the next-record value R is easily

predicted in both models by taking the explanatory variable equals to 0. This leads to potentially propose two

quantities:

R̂1 = â0 + â2 ,

in Model 1, and:

R̂2 = â0 ,

in Model 2, as predictions of R. In addition, from the statistical properties of linear regression models, it is not

much more difficult to provide a prediction interval for R, referred to prediction interval of linear models. We

thus propose to use such an interval for the construction of an RPI. In light of a comparison of the functions

of k involved in (1) and (2), we already do observe that Model 1 will tend to overestimate the prediction of R

compared to the one of Model 2.

Let us now mention that the use of these linear models is unconventional. With the order statistics as observed

variables, a priori the residuals ϵk do not satisfy the classical assumptions of independence and identical distri-

bution. In addition, these residuals do not follow a normal distribution. Despite that, the data sets considered

in this presentation show that the residuals obtained by applying Models 1 and 2 are generally rather small.

And this may lead one to think that a prediction obtained in this way for the next record value is credible. In

practice, observation of small residuals results in a determination coefficient, or R2, close to 1.

A difficulty however arises since the prediction intervals obtained by Model 1 or by Model 2 turn out to be of

low confidence levels (see Tables 3 and 4 in Section 4.2, where these confidence levels are calculated for sev-

eral sets of simulated data). After having determined an important part of the low confidence level origin, it is

proposed in this paper to involve both models to construct a prediction interval for R by retaining the upper

endpoint obtained from Model 1 and the lower endpoint obtained from Model 2. With such a construction, the

RPI shows a better confidence level, and, if necessary, a central tendency feature attached to it will therefore

serve as a prediction of R. The RPI obtained by this linear model method (LMM) is the subject studied here.

Hence, the purpose of this presentation is to evaluate the practical interest of this linear model approach by

considering its application to several examples of simulated data according to usual distribution models in

extreme-value theory, and to real data. For each simulated-data set, using the computing power, the next-

record value was also simulated and the probability that this value is included in an RPI was empirically eval-

uated by generating a large number of these samples. All the computer processing necessary for the progress

of this work was done with the R software ( http://www.R-project.org (2008)), and some general references on

linear models are Jobson (1991), Searle (1997) and Seber (1977).
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The rest of the paper is organized as follows. The sets of simulated and real data, that underlie this presentation,

are introduced in Section 2. Some known results to estimate next-record values are then recalled in Section 3.

Application of the LMM to the sets of simulated and real data is the subject of Section 4, a comparison of the

results with those coming from the Pareto assumption is also provided. We conclude the paper with a brief

discussion of the results obtained, some development prospects of this work being also included.

2 Simulated and real data

The sets of simulated data and of real data underpinning this presentation are successively presented.

2.1 Simulated data

Under the model assumptions, we simulate samples taking PX1 in three parametric families of probabilities

with different upper-tail behaviors. These families are representative of those used in extreme-value theory,

particularly as a model of loss distributions in insurance. Thus, let us consider the normal family, the log-

normal family, and the Pareto family. These families represent, respectively, distributions with not very heavy

tails, distributions with heavy tails, and distributions with very heavy tails. The two first families lie in the Gum-

bel extremal domain of attraction while the last family lies in the Fréchet one. These examples have appeared

to be sufficiently illustrative to not have to consider other families of distributions, as gamma, log-gamma,

Weibull, or Burr families, for instance.

For the sake of allowing for comparisons within these families, the distributions were chosen with the same

mean arbitrarily equals to 1, and with the same variance denoted by σ2. Therefore, in the presented simula-

tions, the probability distribution PX1 will be a normal distribution denoted by N (1,σ2), or a log-normal one

denoted by logN (−(1/2) log(1+σ2), log(1+σ2)), or else a Pareto one denoted by P(1−1/(1+


1+1/σ2),1+


1+1/σ2).

For σ2, the values 0.5 and 2 were retained to consider cases of probabilities with large and very large variances

(these values have to be compared with respect to the mean value 1).

For vectors Yℓ,n resulting from sample simulations of such distributions, Figures 1, 2, and 3 show several graphs

of the coordinates Xn,k as a function of k. Each figure is related to a different parametric family, and consists

of three sub-figures for the following choices of n and ℓ values: n = 1000 and ℓ = 40 left sub-figure, n = 100

and ℓ = 10 center sub-figure, and n = 20 and ℓ = 10 right sub-figure. The ℓ values were fixed on the basis of

the real-data ones. Both choices of σ2 are represented in each sub-figure. In addition, for the sake of visual

comparability, the vertical-axis scales were taken identical for the three sub-figures in each figure, thus, as n

becomes smaller, we must observe a decrease in the level of the sample extreme values.

The following comments shed light on some aspects of Figures 1 to 3.

• For the samples presented, a higher level of the extreme values is detected for the log-normal distribu-

tions compared to the normal distributions, but not for the Pareto distributions compared to the log-

normal distributions despite a heavier tail for the Pareto distributions. This can be explained by looking
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Figure 1. Six simulations of Y for normal distributions
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Figure 2. Six simulations of Y for log-normal distributions
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Figure 3. Six simulations of Y for Pareto distributions
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Figure 4. Comparison of the simulated densities for σ2 = 2 on two areas
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Figure 5. Comparison of the two simulated Pareto densities on two areas

at the densities of these distributions. For example, if σ2 = 2, the density of the related log-normal dis-

tribution is above or very close to that of the related Pareto distribution in the area of the observed large

values as indicated by Figure 4 representing the three densities on two areas. Consequently, the value of

n should be greatly increased to observe a change of the situation.

• A higher level of the extreme values is also detected when the variance increases for the normal family,

and, if the sample size is large, for the log-normal family and, partly, for the Pareto family. Otherwise, the

fluctuations due to a change of samples prevail over those due to an increase in variance. In addition, the

densities of the two Pareto distributions P(0.551,2.225) (case σ2 = 2) and P(0.634,2.732) ( case σ2 = 0.5)

are very close in the area of the observed large values as shown by Figure 5.

• For σ2 fixed, the convergences of the empirical mean and of the empirical variance to the values 1 and

σ2 are slower for the log-normal distribution than for the normal, and for the Pareto distribution than for

the log-normal. In fact, in the Pareto case, the empirical variance may remain substantially smaller than

the theoretical variance, as shown in Figure 6 where the evolutions of the empirical moments are given

for a sample of size 100,000 when σ2 = 2. The lack of very large values in a Pareto sample also appears

to be related to the smallness of the empirical variance. In fact, in a sample, the nearer are the empirical

and theoretical variances, the larger are the extreme values, however this too scarcely arrives, it seems.

This issue will not be discussed further here, but we will keep in mind that there may be a problem on the
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Figure 6. Evolutions of the empirical moments of a 100,000 Pareto sample for σ2 = 2

Pareto simulations to eventually limit the scope of the results obtained.

2.2 Real data

In Figure 7, we present the coordinates Xn,k of Yℓ,n as a function of k for the two following examples. First, the

largest economic costs for the natural disasters in the World. These costs were observed since 1976 (the Sendai

disaster included), and are expressed in 2010 US dollars (source De Haan et al. (2006)). There is a total of 10

observations; the three largest, in descending order, being the Sendai earthquake (2011), the Kobe earthquake

(1995), and Hurricane Katrina (2005). Then, the largest claim-costs for insurers and reinsurers in the World.

These costs were observed since 1970 (the Sendai disaster not included), and are also expressed in 2010 US

dollars (source http://www.swissre.com/sigma (2011)). There is a total of 40 observations; the three largest,

in descending order, being Hurricane Katrina(2005), Hurricane Andrews (1992), and the terrorist attacks of

September 11, 2001. Economic cost and cost for insurance are obviously different, since the latter usually only

covers a (small) fraction of the damage caused by a natural disaster. In addition, both the costs do not take into

account the “cost” of lost human lives, and so, some of the recent disasters do not appear in these rankings.

Now, it can effectively be seen on the graphs in Figures 1-3 and 7 the convex decreasing shape of the represen-

tations of the largest values Xn,k as a function of k, with a noise more important if n is small. Moreover, taking

into account the different scales for the vertical axes, these graphs seem to show great similarities as ℓ remains

fixed.

3 Some known facts

Results dealing with records, extreme-value theory, or asymptotic of order statistics are recalled now. All results

quoted are in relation to the objective of estimating R starting from the observation of Yℓ,n . Three subsections
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Figure 7. Observed data in billions of dollars

present successively elementary facts, asymptotic results and complementary observations on these issues.

3.1 Elementary facts

Let F be the distribution function of PX1 , and fix in this section the quantities n and ℓ. The right end of the

support of PX1 being infinite, we can make the following remarks.

Firstly, for y ∈Rℓ fixed, if the maximum of the coordinates of y is denoted by s, it is easily seen that, for x ≥ s:

P(R > x/Yℓ,n = y) =P(R > x/ Mn = s) =
∞∑
ℓ=1

F ℓ−1(s)(1−F (x)) = 1−F (x)

1−F (s)
. (3)

Thus, the best prediction of R is the conditional expectation:

E(R/Yℓ,n = y) = E(R/Mn = s) = 1

1−F (s)

∫

]s,∞]
(1−F (x))d(x) = E(X1 − s/X1> s) , (4)

that is the expected cost in excess of the threshold s. Moreover, an expression for an RPI can generally be

obtained if F is known. Note that all these quantities depend on the observations of Mn , however, their expres-

sions are not always explicit and may require the use of numerical solutions.

For a > 0 and α ∈ ]0,∞[ , the Pareto distribution P(a,α) has the distribution function 1−(x/a)−α for x > a, and

0 otherwise. For this distribution and 0 < δ< 1, an RPI with confidence level 1−δ is easily obtained from (3) as:

IPar eto(R) = [
(1−δ/2)−1/αMn , (δ/2)−1/αMn

]
. (5)

Similarly, in the cases of a normal or a log-normal distribution an RPI is expressed in terms of the distribution

and quantile functions of the standard normal. Note that, to obtain an exact RPI with a fixed confidence level

in the case of simulated data, we will use such an expression calculated from the conditional distributions (3).

Note also that, in general, there exists no estimator of F that is a function of Yℓ,n , which prevents to use such an

estimator instead of F in (3) and (4). So that, in such a case it cannot be obtained by this mean a prediction or

a prediction interval for R. However, in the Pareto case, using (5), it is sufficient to know an estimator of α that

is a function of Yℓ,n to obtain a prediction interval for R. If necessary, we will use in this presentation the Hill

9
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estimator α̂Hi l l given by:

α̂Hi l l =
( 1

ℓ

ℓ∑
k=1

log Xn,k − log Xn,ℓ

)−1
. (6)

And, if we want to be more precise, the asymptotic normality of the Hill estimator (see, for example, Theorem

6.4.6 in Embrechts et al. (2008)) provides a confidence interval at 95% asymptotic confidence level of the form:

IHi l l (α) = [
α̂Hi l l (1−1.96/


ℓ) , α̂Hi l l (1+1.96/


ℓ)

]
. (7)

Nevertheless, this way to proceed is equivalent to assume that PX1 follows a Pareto distribution, and, as we will

see in what follows, this assumption may lead to an RPI with an upper endpoint much higher than required if

it is not verified.

3.2 Asymptotic results

We focus here on two asymptotic results in extreme value theory. Recall that, under the assumption of the

infinite right end for the support of PX1 , the Fisher-Tippett theorem shows that the limiting distribution of Mn

is in the Fréchet extremal domain of attraction or in the Gumbel one. In fact, if PX1 is in the Fréchet domain,

as are Pareto distributions, then the limiting distribution of Mn is a Fréchet distribution, while if PX1 is in the

Gumbel domain, as are normal and log-normal distributions, then this limiting distribution is the Gumbel

distribution. This dichotomy is reflected in the results we state now, the first, that can be used to test between

these two asymptotic situations, and the second, that we use to show that the LMM applies quite similarly in

both circumstances. The first deals with the convergence to a GPD, and the second with an asymptotic of order

statistics.

The GPD with shape parameter ξ ∈ [0,∞[ and scaling parameter β ∈ ]0,∞[ has its distribution function defined

by:

1−Gξ,β(x) = (1+ξx/β)−1/ξ , if x ∈ [0,∞[ , and 0,otherwise,

with the convention (1+ξx/β)−1/ξ = e−x/β if ξ= 0 (Embrechts et al. (2008)). Then (see, for example, Theorem

3.4.13 in Embrechts et al. (2008)), for a certain functionβ(s), the functions (1−F (s+·))/(1−F (s)) and 1−Gξ,β(s)(·)
come closer (in uniform norm) as the threshold s goes to infinity. Here, the parameter ξ is null if PX1 is in the

Gumbel domain, while the parameter ξ is strictly positive if PX1 is in the Fréchet one. Besides, we have in the

latter case the relation ξ= 1/α where α is the shape parameter of the limiting distribution.

For observed data, the method POT may then be applied to distinguish between both asymptotic cases the one

related to these data. For that purpose, it is recalled that, for a sample of a GPD distribution, the maximum

likelihood estimator ξ̂ of ξ is such that

ℓ(ξ̂−ξ) converges in distribution to the normal N (1, (1+ξ)2), as ℓ goes

to infinity (Embrechts et al. (2008), section 6.5.1). The Slutsky Theorems then allow to obtain a confidence

interval for ξ. At a 95% asymptotic confidence level, this interval is given by:

IPOT (ξ) = [
ξ̂−1.96(1+ξ̂)/


ℓ , ξ̂+1.96(1+ξ̂)/


ℓ
]

. (8)
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Therefore, assuming that Y comes from observations over a large threshold s, and assuming, from what was

just pointed out, that the random variables Xn,k − s, for k ∈ {1, . . . ,ℓ}, form approximately a sample of a GPD

distribution, the interval in (8) may be evaluated. And, if this interval does not approach the value 0, we are led

to believe that PX1 is in the Fréchet domain, while, otherwise, the assumption that PX1 is in the Gumbel domain

cannot be rejected. Note, however, that there is not always a maximum likelihood estimator of ξ which is non-

negative (the strictly negative case is related with the assumption that PX1 has a finite support). In addition,

if PX1 is a Pareto distribution, the accuracy obtained on ξ by (8) is significantly smaller than that obtained on

α= 1/ξ by (7) (1+ ξ̂ should be replaced by ξ̂ in (8) to obtain the same accuracy when ℓ is large).

As n tends to infinity with ℓ remaining fixed, and using centering and normalizing constants, the multivariate

limiting distribution of Y is known (Theorem 4.2.8 and Example 4.2.9 in Embrechts et al. (2008), see also

Resnick (2007)) and depends on whether PX1 is in the Fréchet domain or in the Gumbel one. The expression

of the mean (m1 · · ·mℓ)′ of this multivariate limiting distribution is given by:

mk = 1

(k −1)!

∫∞

0
yk−1−1/αe−y dy = Γ(k −1/α)

Γ(k)
, k ∈ {1, . . . ,ℓ} ,

if PX1 is in the Fréchet domain with a shape parameter α> 0, and:

mk = 1

(k −1)!

∫∞

0
(− log y)yk−1e−y dy , k ∈ {1, . . . ,ℓ} ,

if PX1 is in the Gumbel domain. This provides vectors of “asymptotic data” to which can be applied the linear

models defined by (1) and (2).

The results of the application of Model 1 on these asymptotic data sets are detailed in Figure 8 for ℓ= 10, and

in Figure 9 for ℓ = 40. The two sub-figures in each of these figures expound the two cases related to both

values of variance, which correspond to two different values of the shape parameter α in the Fréchet case.

The Gumbel case is represented in both sub-figures, its representation being facilitated by using the relation

mk = mk−1 −1/(k−1), for k ∈ {2,3, . . .}. Also, observe that the mk can take negative values in the Gumbel case

because the centering constants are non-null.

For Model 2, taking into account the asymptotic-data shapes, its fits will be slightly less efficient than those

obtained by using Model 1. That model only serves to capture an estimate of the lower endpoint of the RPI.

This estimate is better than the one that would be obtained simply by considering Mn and its application on

the asymptotic data sets. This last one is not given here.

Model 1 fits almost as well in both the Fréchet and the Gumbel cases, and the fit is better for a small value of ℓ.

It is an element in favour of the use of the LMM to predict R.

3.3 Complementary observations

In the context studied, n is unknown or in a non-asymptotic background, and ℓ is rather small. Thus, depend-

ing on the data, and on misunderstandings about the data setting, another approach than the one recalled in

Sections 3.1 and 3.2 must be sought in some cases. This presentation will show that two basic models of linear
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Figure 8. Applications of Model 1 to the asymptotic data for ℓ= 10
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Figure 9. Applications of Model 1 to the asymptotic data for ℓ= 40
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regression type may serve as prototypes for the dependence of R in Y . And this approach is non-parametric,

in the sense that it does not search to estimate PX1 in a parametric family of distributions, or to impose a type

of decrease for the tail of PX1 . Furthermore, it now becomes clear that the use of the LMM is related to a low

belief in the fact that PX1 follows a Pareto distribution, or, more generally, belongs to the Fréchet domain (any-

way, its tail is then of Pareto type). In this presentation, we propose to assess by the Monte-Carlo method the

mean of the confidence levels for the prediction intervals constructed by the LMM. In fact, this is possible in

the case of simulated data, where a large number of samples X1, . . . , Xn+ j can be generated for j very large com-

pared to n. Then, on each sample, the first n values determine a vector Y on which the LMM can be applied,

while the next j values allow determining the next-record value. In this way, an estimate of the probability that

this next-record value lies in its prediction interval can thus be obtained. However, we will also calculate the

confidence levels of the RPI obtained for the simulated-data sets. Moreover, on each of our examples of sim-

ulated data, we will compare the prediction interval obtained by the LMM with the exact one calculated using

the conditional distribution (3), and with that calculated by (5) and (6) therefore assuming that PX1 follows a

Pareto distribution.

4 Application of the linear model method

Three subsections present the RPI obtained for the simulated data sets by using the LMM, different evaluations

of the accuracy of these prediction intervals, and the RPI obtained for the real-data sets by using the LMM.

4.1 Application on the simulated data

For all sets of simulated data presented in Section 2.1, the results obtained by the LMM are detailed in Figures 10

to 18. The two sub-figures in each of these figures expound the two cases related with both values of variance,

the other parameters remaining fixed. All the graphs in these figures incorporate the description of the values

Xn,k as a dotted line, the description of the predictions by Models 1 and 2 as two continuous lines, and the

description of the related prediction intervals as two broken lines. And, even if we are only interested in the

prediction interval for k = 0, the latest curves are entirely represented for clarity. Recall also that the upper

endpoints of these prediction intervals are the ones of the 95% prediction intervals obtained from Model 1,

while their lower endpoints are the ones of the 95% prediction intervals obtained from Model 2. In addition to

each graph, a legend specifies the values of the two predictions R̂1 and R̂2 (in the legend the first value is for

Model 1 and the second for Model 2), the RPI, denoted by PI in the legend, and the values of the determination

coefficients, or R2, for both models (in the legend the first value is for Model 1 and the second for Model 2). It

has to be noted that, for the expressions of R̂2 and of the lower endpoint of the RPI, they are taken equal to Mn

every time the ones calculated by Model 2 are found smaller than Mn .

The following comments shed light on some aspects of Figures 10 to 18.
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Figure 10. R prediction intervals for the normal data when n = 1000 and ℓ= 40
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Figure 12. R prediction intervals for the normal data when n = 20 and ℓ= 10
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Figure 13. R prediction intervals for the log-normal data when n = 1000 and ℓ= 40
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Figure 14. R prediction intervals for the log-normal data when n = 100 and ℓ= 10
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Figure 15. R prediction intervals for the log-normal data when n = 20 and ℓ= 10
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Figure 16. R prediction intervals for the Pareto data when n = 1000 and ℓ= 40

!

0 2 4 6 8 10

1
2

3
4

5
6

k

Y
k

!
2
= 2

°
 
 

data
prediction
pred. interv.

    Prediction R
^

   4.027  et  3.775

PI= [3.143 , 6.021]  

           -------

     Accuracy R
2

 0.912  et  0.952

0 2 4 6 8 10

2
3

4
5

6
7

8

k

Y
k

!
2
= 0.5

°
 
 

data
prediction
pred. interv.

    Prediction R
^

  6.991  et  5.434

PI= [4.983 , 8.236]  

          -------

     Accuracy R
2

 0.983  et  0.989

Figure 17. R prediction intervals for the Pareto data when n = 100 and ℓ= 10
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Figure 18. R prediction intervals for the Pareto data when n = 20 and ℓ= 10

• Excluding in the left sub-figure in Figure 13, the determination coefficients are quite good and often

greater than 0.9.

• The lower endpoints of the RPI calculated by Model 2 do not seem very efficient, appearing only four

times in place of Mn on the data sets presented.

• The appearance of the different curves show that Model 1 has often a better fit to the data than Model 2,

which results in a better determination coefficient for the first model. In such cases, Model 2 requires

to be less close to the data in order to correctly predict the small values of R. It is also clear that the

lower endpoints of the RPI calculated by Model 1 are inappropriate to this objective. Indeed, these lower

endpoints can easily be imagined from the upper endpoints by the symmetries parallel to the vertical axis

around the continuous lines of prediction of Model 1.

• When ℓ = 10 several data representations suggest that the simple linear model (a2 = 0 in Models 1 and

2 ) fits rather well on the data. However, in many of these cases, this model will underestimate the large

values of R since the enlargements, which appear to the left of all the prediction interval graphs, are

necessary to handle all the R variability if we assume that the RPI fairly measure the R variability (see the

next subsection). In particular, with the aim to predict the next-record value, it seems not appropriate

to use the common practice of eliminating a parameter that is eventually not significant in a statistical

model.

4.2 Evaluation of the LMM for the simulated-data sets

The results given in the following eight tables are intended to analyze the interest of the statistical process being

studied. The first four tables use the Monte-Carlo method to estimate the means of the determination coeffi-

cients and of the confidence levels of different prediction intervals obtained by applying the LMM when PX1 ,
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n, and ℓ are fixed as in the simulated data sets. Then, the exact confidence levels of the RPI obtained for the

simulated data sets are calculated in the fifth table. Finally, these RPI are compared with those obtained by an

exact calculation and by using the Pareto assumption. This last assumption is tested in the last three tables.

For each PX1 , n and ℓ fixed as in the simulated data sets, and for j = 100,000, the simulation of a thousand sam-

ples of size n + j according to PX1 is generated. For each of these samples, the determination coefficients and

the prediction intervals for Models 1 and 2 were calculated on the first n values, and the value of the next record

was observed on the last j values (with a few exceptions that were counted). Thus, the empirical assessments

of the following quantities were obtained:

• the probability of observing R in its prediction interval constructed by the LMM, this probability being

an approximation of the mean of the confidence levels of such prediction intervals, it appears in Table 1;

• the mean of the determination coefficients obtained when applying Models 1 and 2, given in Table 2;

• the probabilities that R is above the prediction intervals calculated by both Models 1 and 2, given in

Table 3;

• the probabilities that R is below the prediction intervals calculated by both Models 1 and 2, given in

Table 4.

Table 1. Means of the confidence levels of the RPI

obtained by the LMM, estimated on 1000 samples

Distributions Normal log-normal Pareto

σ2 2 0.5 2 0.5 2 0.5

n = 1000, ℓ= 40 0.968 0.972 0.925 0.948 0.826 0.86

n = 100, ℓ= 10 0.899 0.907 0.837 0.872 0.782 0.821

n = 20, ℓ= 10 0.925 0.928 0.845 0.879 0.76 0.796

The results in Table 1 seem rather satisfactory. To go further in the discussion, since one assesses the prob-

abilities of certain events, and taking into account the number of samples simulated, we may use the usual

asymptotic confidence interval of the parameter in a Bernoulli sample to obtain an order of magnitude for the

accuracy of the results presented. In particular, at a 95% confidence level, the accuracy is about ±0.0248 if the

probability equals 0.8 and about ±0.0186 if the probability equals 0.9. Thus, some comparisons between the

results in Table 1 that may appear to be surprising are not significant in fact. For example, it is the case if we

compare for the normal distribution the results when n = 100 and when n = 20, or if we compare the results

when σ2 = 2 and when σ2 = 0.5, the other parameters remaining fixed. In a significant way, this time, the confi-

dence levels are better when n = 1000, and they decrease when the tail of the distribution becomes increasingly

heavy.
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Table 2. Means of the determinant coefficients in applying

models 1 and 2, estimated on 1000 samples

Distributions Normal Log-normal Pareto

σ2 2 0.5 2 0.5 2 0.5

n = 1000, ℓ= 40, Model 1 0.947 0.945 0.925 0.93 0.925 0.927

n = 1000, ℓ= 40, Model 2 0.937 0.935 0.831 0.877 0.75 0.773

n = 100, ℓ= 10, Model 1 0.959 0.961 0.959 0.96 0.959 0.958

n = 100, ℓ= 10, Model 2 0.941 0.942 0.908 0.924 0.888 0.894

n = 20, ℓ= 10, Model 1 0.962 0.963 0.96 0.962 0.957 0.958

n = 20, ℓ= 10, Model 2 0.948 0.946 0.901 0.922 0.885 0.898

Table 3. Probabilities to be above the prediction intervals calculated

by models 1 and 2, estimated on 1000 samples

Distributions Normal Log-normal Pareto

σ2 2 0.5 2 0.5 2 0.5

n = 1000, ℓ= 40, Model 1 0.022 0.017 0.065 0.044 0.165 0.131

n = 1000, ℓ= 40, Model 2 0.916 0.921 0.977 0.961 0.989 0.983

n = 100, ℓ= 10, Model 1 0.066 0.06 0.146 0.099 0.209 0.163

n = 100, ℓ= 10, Model 2 0.243 0.254 0.428 0.379 0.517 0.446

n = 20, ℓ= 10, Model 1 0.038 0.048 0.14 0.098 0.226 0.191

n = 20, ℓ= 10, Model 2 0.189 0.179 0.454 0.352 0.521 0.497

The results in Table 2 are satisfactory. Observe only that there is no detectable changes in function of the distri-

bution families for Model 1, unlike for Model 2 that fits less well when the distribution tail becomes increasingly

heavy.

The results in Tables 3 and 4 justify the approach retained to select the upper and lower endpoints of the RPI in

the LMM.

The confidence levels of the prediction intervals obtained by the LMM are calculated numerically using (3)

for the eighteen simulated data sets since for these data PX1 is known. These confidence levels are detailed in

Table 5. Observe that in this table the value 1 means a level greater than 1−10−4.

The results in Table 5 illustrate a rather substantial variability of the confidence levels of the RPI obtained by
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Table 4. Probabilities to be below the prediction intervals calculated

by Models 1 and 2, estimated on 1000 samples

Distributions Normal Log-normal Pareto

σ2 2 0.5 2 0.5 2 0.5

n = 1000, ℓ= 40, Model 1 0.87 0.847 0.809 0.827 0.73 0.729

n = 1000, ℓ= 40, Model 2 0.01 0.011 0.01 0.008 0.009 0.009

n = 100, ℓ= 10, Model 1 0.408 0.387 0.485 0.452 0.474 0.482

n = 100, ℓ= 10, Model 2 0.035 0.033 0.017 0.029 0.009 0.016

n = 20, ℓ= 10, Model 1 0.354 0.363 0.494 0.472 0.456 0.433

n = 20, ℓ= 10, Model 2 0.037 0.024 0.015 0.023 0.014 0.013

Table 5. Exact confidence levels of the RPI obtained by the LMM

for the simulated data sets

Distributions Normal Log-normal Pareto

σ2 2 0.5 2 0.5 2 0.5

n = 1000, ℓ= 40 1 0.989 0.981 0.946 0.861 0.88

n = 100, ℓ= 10 0.774 0.993 0.61 0.937 0.765 0.689

n = 20, ℓ= 10 0.995 1 0.865 0.996 0.762 0.959

the LMM. There are several confidence levels too high, with intervals therefore too large, and there are several

confidence levels too low, with intervals therefore not enough large. A comparison of these results with those

of Table 1 also allows measuring the influence of the sample on the confidence level variability. Nonetheless,

these results often reflect fairly good confidence levels.

Tables 6 and 7 allow comparing the RPI obtained by the LLM with the exact prediction intervals based on (3),

and with the prediction intervals obtained using (5) and (6), thus assuming that PX1 is a Pareto distribution.

Following, in order to test the Pareto assumption, Table 8 gives the asymptotic confidence intervals calculated

by using (8) for the parameter ξ in the POT method. All these calculations were done for the eighteen simulated

data sets, and all the confidence levels were taken equals to 95%.Thus, Table 6 gives the exact 95% prediction

intervals, while, for the upper endpoints of the prediction intervals, Table 7 gives in percentage the differences

between the exact calculation and those obtained by the LMM and by using (5) and (6). For the lower endpoints,

it is observed here that the same differences do not exceed a few percentage units, so that they are not specified
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in this presentation. Finally, Table 8 gives the asymptotic confidence interval for ξ, but only if the maximum

likelihood estimator ξ̂ of ξ is found non-negative, the negative case being related to the assumption that PX1

has finite support.

Table 6. Exact prediction intervals for the simulated data sets, rounded to the tenth

Distributions Normal Log-normal Pareto

σ2 2 0.5 2 0.5 2 0.5

n = 1000, ℓ= 40 [6.7,7.8] [3.1,3.8] [38.9,89.3] [5.4 ,10] [11.3,58.5] [9.9,37.7]

n = 100, ℓ= 10 [3.9,5.7] [3,3.7] [5 ,18.1] [5 ,9.5] [3.2 ,16.5] [4.9 ,18.7]

n = 20, ℓ= 10 [3.8,5.6] [2.9,3.6] [4.6 ,17] [4.4 ,8.6] [2.4 ,12.5] [4.3 ,16.4]

Table 7. Upper endpoints of the RPI constructed by the LMM and using the

Pareto assumption (PA), given by their differences with the exact upper

endpoints in percentage

Distributions Normal Log-normal Pareto

σ2 2 0.5 2 0.5 2 0.5

n = 1000, ℓ= 40, LMM 45% 3.6% 6% -11% -54% -44%

n = 1000, ℓ= 40, PA 46% 22% 110% 30% -5.4% -15%

n = 100, ℓ= 10, LMM -14% 2.4% -55% -14% -64% -56%

n = 100, ℓ= 10, PA 35% 58% 24% 111% -23% 33%

n = 20, ℓ= 10, LMM 12% 61% -42% 31% -52% -17%

n = 20, ℓ= 10, PA 1512% 411% 1254% 336% -30% 45%

The results in Table 7 reflect deviations from the exact calculations that are often important and may even be

very large, especially when using the Pareto assumption, for small n (n = 20) but also for n greater in the case

of log-normal distributions. The very large deviations are positive, they thus show that the Pareto assumption

can lead to provide much larger new record values (up to 16 times) than necessary. As might be expected, for

Pareto samples, with the exception of n = 20, the method using (5) and (6) works better than the LMM, although

it still happens to predict with quite large differences. From this point of view, in all considered cases, the LMM

obtains differences of up to 64%, that is to say, differences that remain more reasonable than the ones obtained

under the Pareto assumption.
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Table 8. Asymptotic confidence intervals of the parameter ξ for the simulated data sets

Distributions Normal Log-normal Pareto

σ2 2 0.5 2 0.5 2 0.5

n = 1000, ℓ= 40 [−0.24,0.43] [−0.28,0.37] [0.07,1.03] [−0.31,0.31] [0.13,1.15] [−0.09,0.73]

n = 100, ℓ= 10 ξ̂< 0 ξ̂< 0 ξ̂< 0 ξ̂< 0 ξ̂< 0 ξ̂< 0

n = 20, ℓ= 10 ξ̂< 0 ξ̂< 0 ξ̂< 0 ξ̂< 0 [−0.13,2.72] [−0.30,1.99]

!

0 2 4 6 8 10

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

k

Y
k

Largest economic costs of natural disasters

°
 
 

data
prediction
pred. interv.

  Prediction R
^

 414 and 289.8

PI = [248 , 572]  

        -------

   Accuracy R
2

0.935 and 0.978  

0 10 20 30 40

0
5

0
1

0
0

1
5

0

k

Y
k

Largest claim costs in insurance

°
 
 

data
prediction
pred. interv.

   Prediction R
^

 168.4 and 72.3

 PI = [72 , 184]  

         -------

     Accuracy R
2

 0.952 and 0.629  

Figure 19. Prediction of the next-record values for the real-data sets

Recall that the asymptotic confidence interval (8) should eventually allow deciding between the Gumbel and

the Fréchet asymptotic cases,that is to say, between the normal or log-normal assumptions and the Pareto one

for the simulated data sets, and that, depending on whether this interval contains 0 or not. Thus, this interval

is given only when the estimator ξ̂ ≥ 0. The case ξ̂ < 0 being assimilated to the Gumbel case here. Often, the

results in Table 8 do not allow to correctly determine the distribution type of PX1 . One error on three found

in each row of the table. For example, they never recognize the Pareto assumption for small n (n = 100 and

n = 20).

4.3 Application on the real-data sets

In Figure 19 are summarized the treatments by the LMM of the two examples of real data reported in Section

2.2, with exactly the same conventions as those used to present the figures in Section 4.1.

Thus, considering that the real-data sets come from samples of heavy-tail distributions, and considering that

the confidence levels values of Table 1 are significant for these data sets, it can therefore be estimated with a

probability of at least 76% that the next-record value will not exceed, for the economic costs of natural disas-
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Figure 20. Prediction of the next-record values for the real-data sets when they are observed just before the

largest cost

ters, 572 billion of US dollars (remember that the earthquake in Sendai would have created an economic cost

of 234 billion). Similarly, we can estimate with a probability of about 82% that the next-record value will not

exceed, for the claim costs for insurers and reinsurers, 184 billion (remember that Hurricane Katrina generated

a cost of 72 billion). At the time of this writing, we do not know if the claim cost for insurers and reinsurers

caused by the earthquake in Sendai will be the next record.The following observation shows that the insured

risks should be analyzed precisely before being able to decide. Indeed, the Kobe earthquake is number two on

the list of economic costs of natural disasters, and only number twenty-eight for the claim costs for insurers

and reinsurers.

For these real-data sets, the asymptotic confidence intervals for the parameter ξ are equal respectively to

[−0.42,1.48] (economic costs) and to [0.24,1.35] (claim costs for insurers and reinsurers), and, in the first case,

the assumption that PX1 is in the Gumbel domain cannot be rejected. In addition, assuming that PX1 follows a

Pareto distribution, and using (5) and (6), the prediction intervals of the next record values become then equal

in billions respectively to [237.7,2253.9] (economic costs) and to [73.88,1684.9] (claim costs for insurers and

reinsurers). These results come from estimates of parameter α calculated by (7), and respectively equal to 1.629

and 1.172. The confidence intervals (8) are respectively [0.619,2.638] and [0.809,1.535] . Observe that the up-

per endpoints of the last R prediction intervals are considerably more important than those calculated by the

LMM. However, these intervals are related to a 95% asymptotic confidence level, which is a priori not contra-

dictory with the results obtained by the LMM where the confidence levels are not exactly known.

To test if the LMM would be able to predict the largest cost observed, we remove from both real-data sets the

largest cost and all costs that were occurred after the largest cost. It thus remains 9 observations for the eco-

nomic costs and 29 observations for the claim costs for insurers and reinsurers. The resulting application of the

LMM is then given in Figure 20.
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Figure 21. Prediction of the next-record values for the real-data sets with 99% confidence levels to fix the upper

endpoints of the prediction intervals

For these “old” real-data sets, the asymptotic confidence intervals for the parameter ξ are now equal respec-

tively to [0.38,5.58] (economic costs) and to [−0.01,1.12] (claim costs for insurers and reinsurers). In the second

case, the assumption that PX1 is in the Gumbel domain cannot be rejected. In addition, assuming that PX1 fol-

lows a Pareto distribution, and using (5) and (6), the prediction intervals of the next-record values become then

equal in billions respectively to [202.7,1316.2] (economic costs) and to [25.36,421.63] (claim costs for insurers

and reinsurers). These results come from estimates of parameter α calculated by (7), and respectively equal to

1.958 and 1.303 . The confidence intervals (8) are respectively [0.679,3.237] and [0.829,1.778] . Once again, the

upper endpoints of the last R prediction intervals are considerably more important than those calculated by

the LMM, and yet the LMM predicts the observed values of the next record from the old real-data sets.

To continue this discussion a little, we observe that the prediction intervals of the linear models can be con-

structed at a higher confidence level, for example, equal to 99%, in order to increase the confidence levels in

the LMM. In this case, it then would be necessary to again estimate the confidence levels of the RPI, as in Ta-

ble 1. The sensibility of the LMM to this parameter is simply illustrated in Figure 21. The treatments of the

real-data sets are also summarized in this Figure when solely the upper endpoints of the prediction intervals

are determined at a 99% confidence level. The observed increases of the upper endpoints seem reasonable

when comparing Figure 19 and Figure 21.

In conclusion, these studies on real data do not allow to exclude any of the methods studied. However, their

consequences are really different in terms of the upper endpoint of the RPI. Indeed, from the points of view of

economy or insurance, the amounts involved are considerably different. At this moment, it seems to us that

going further in the discussion falls under the belief of a particular tail behavior assumption for the distribution

PX1 . Nevertheless, the results observed on the simulated data show that a part of the Pareto case is at least taken

into account by the LMM.
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5 Conclusion

In a first analysis, the linear model method seems to perform rather well. For example, on the sets of data

examined the determination coefficients of the linear regression models (1) and (2) are in almost all cases close

to (and often exceed) the value 0.9, which encourages to believe in the method. However, the emergence of a

very large extreme value, as generated by heavy-tail probabilities, should bring the next-record value out of the

prediction interval obtained. To some extent, the second argument explains the high variability of the problem

studied, variability that was illustrated for example when PX1 is a Pareto distribution and the Hill estimator is

used. The main consequence of this presentation lies in the results set out in Table 1 or in Table 5. In fact,

they allow deciding between these two arguments by showing that, at least for the range of n and ℓ tested, it

is quite possible to predict the next-record value from the largest values of a sample without any parametric

assumption on the sample distribution, but with an important margin of error as usual in this domain. From

this point of view, the method using linear regression models appears to obtain results more robust than the

one using the Pareto assumption when PX1 is not of Pareto type, but underestimating the upper endpoint of

the RPI when PX1 is of Pareto type.

At this moment, several improvements can be envisaged.

• It seems clear from the results in Table 1 that better R prediction intervals can be constructed by restrict-

ing the number of probability families considered in the study. For example, by limiting ourself to the

log-normal and Pareto families, we may increase the confidence levels that fix the prediction intervals in

the linear models, to obtain RPI pertaining to an intermediate position between both probability fam-

ilies. In doing so, the thickness of the error margin will decrease. Recall also that the log-normal and

Pareto families often constitute the first set to be studied in insurance.

• Moreover, even if that does not appear in this work, several other linear regression models were tried be-

fore selecting those based on Models (1) and (2), for example, by working on the logarithm of the sample

values, or by exploring other functions of the explanatory variable k. Usually, a compromise that is used

to select the best model is to fix an acceptable confidence level for the prediction intervals while seeking

the smallest width of these intervals. Observing the results in Tables (1) and (5), the latter criterion ap-

pears to have excessive weight. Other linear regression models can still be searched, but more systematic

research should be undertaken. Theoretical tools as those given in Section 3.2 may help to do this task.

• Furthermore, in the framework studied, it still remains many situations to be tested in order to better

specify the range of validity of the LMM, and, clearly, only a small number of situations were considered

in this work.

Finally, from a mathematical point of view, this presentation appears very light, but it was necessary to explore

the context associated with a first striking observation on one of both examples of real data. And we have been

convinced by the preparation of this presentation that there is an interest to continue the study of the linear
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model approach to predict the next-record value from the largest values of a sample.
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